skip to main content


Search for: All records

Creators/Authors contains: "Coster, Anthea J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper studies the three-dimensional (3-D) ionospheric electron density variation over the continental US and adjacent regions during the August 2017 Great American Solar Eclipse event, using Millstone Hill incoherent scatter radar observations, ionosonde data, the Swarm satellite measurements, and a new TEC-based ionospheric data assimilation system (TIDAS). The TIDAS data assimilation system can reconstruct a 3-D electron density distribution over continental US and adjacent regions, with a spatial–temporal resolution of 1∘× 1∘ in latitude and longitude, 20 km in altitude, and 5 min in universal time. The combination of multi-instrumental observations and the high-resolution TIDAS data assimilation products can well represent the dynamic 3-D ionospheric electron density response to the solar eclipse, providing important altitude information and fine-scale details. Results show that the eclipse-induced ionospheric electron density depletion can exceed 50% around the F2-layer peak height between 200 and 300 km. The recovery of electron density following the maximum depletion exhibits an altitude-dependent feature, with lower altitudes exhibiting a faster recovery than the F2 peak region and above. The recovery feature was also characterized by a post-eclipse electron density enhancement of 15–30%, which is particularly prominent in the topside ionosphere at altitudes above 300 km.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Accurately imaging the 3-D ionospheric variation and its temporal evolution has always been a challenging task for the space weather community. Recent decades have witnessed tremendous steps forward in implementing ionospheric imaging, with the rapid growth of ionospheric data availability from multiple ground-based and space-borne sources. 3-D ionospheric imaging can yield altitude-resolved electron density and total electron content (TEC) distribution in the target region. It offers an essential tool for better specification and understanding of ionospheric dynamical variations, as well as for space weather applications to support government and industry preparedness and mitigation of extreme space weather impact. To better meet the above goals within the next decade, this perspective paper recommends continuous investment across agencies and joint studies through the community, in support of advancing 3-D ionospheric imaging approach with finer resolution and precision, better error covariance specification and uncertainty quantification, improved ionospheric driver estimation, support space weather nowcast and forecast, and sustained effort to increase global data coverage.

     
    more » « less
    Free, publicly-accessible full text available May 22, 2024
  3. This paper presents a multi-instrument observational analysis of the equatorial plasma bubbles (EPBs) variation over the American sector during a geomagnetically quiet time period of 07–10 December 2019. The day-to-day variability of EPBs and their underlying drivers are investigated through coordinately utilizing the Global-scale Observations of Limb and Disk (GOLD) ultraviolet images, the Ionospheric Connection Explorer (ICON) in-situ and remote sensing data, the global navigation satellite system (GNSS) total electron content (TEC) observations, as well as ionosonde measurements. The main results are as follows: 1) The postsunset EPBs’ intensity exhibited a large day-to-day variation in the same UT intervals, which was fairly noticeable in the evening of December 07, yet considerably suppressed on December 08 and 09, and then dramatically revived and enhanced on December 10. 2) The postsunset linear Rayleigh-Taylor instability growth rate exhibited a different variation pattern. It had a relatively modest peak value on December 07 and 08, yet a larger peak value on December 09 and 10. There was a 2-h time lag of the growth rate peak time in the evening of December 09 from other nights. This analysis did not show an exact one-to-one relationship between the peak growth rate and the observed EPBs intensity. 3) The EPBs’ day-to-day variation has a better agreement with that of traveling ionospheric disturbances and atmospheric gravity waves signatures, which exhibited relatively strong wavelike perturbations preceding/accompanying the observed EPBs on December 07 and 10 yet relatively weak fluctuations on December 08 and 09. These coordinate observations indicate that the initial wavelike seeding perturbations associated with AGWs, together with the catalyzing factor of the instability growth rate, collectively played important roles to modulate the day-to-day variation of EPBs. A strong seeding perturbation could effectively compensate for a moderate strength of Rayleigh-Taylor instability growth rate and therefore their combined effect could facilitate EPB development. Lacking proper seeding perturbations would make it a more inefficient process for the development of EPBs, especially with a delayed peak value of Rayleigh-Taylor instability growth rate. 
    more » « less
  4. Abstract

    This study has developed a new TEC‐based ionospheric data assimilation system for 3‐D regional ionospheric imaging over the South American sector (TIDAS‐SA) (45°S–15°N, 35°–85°W, and 100–800 km). The TIDAS‐SA data assimilation system utilizes a hybrid Ensemble‐Variational approach to incorporate a diverse set of ionospheric data sources, including dense ground‐based Global Navigation Satellite System (GNSS) line‐of‐sight Total Electron Content (TEC) data, radio occultation data from the Constellation Observing System for Meteorology, Ionosphere, and Climate‐2 (COSMIC‐2), and altimeter TEC data from the JASON‐3 satellite. TIDAS‐SA can produce a reanalyzed three‐dimensional (3‐D) electron density spatial variation with a high time cadence, yielding spatial‐temporal resolution of 1° (latitude) × 1° (longitude) × 20 km (altitude) × 5 min. This allows us to reconstruct and study the 3‐D ionospheric morphology with multi‐scale structures. The performance of the data assimilation system is validated against independent ionosonde and in situ measurements through an experiment for a strong geomagnetic storm event on 03–04 November 2021. The results demonstrate that TIDAS‐SA can provide detailed and altitude‐resolved information that accurately characterizes the storm‐time ionospheric disturbances in vertical and horizontal domains over the equatorial and low‐latitude regions of South America.

     
    more » « less
  5. Abstract

    This paper conducts a multi‐instrument analysis and data assimilation study of midlatitude ionospheric disturbances over the European and North American longitude sectors during a strong geomagnetic storm on 26–28 February 2023. The study uses a set of ground‐based (GNSS receivers, ionosondes) observations, space‐borne (DMSP, GOLD) measurements, and a new TEC‐based ionospheric data assimilation system (TIDAS). We observed a series of distinct storm‐time features with regard to storm‐enhanced density (SED) and subauroral polarization stream (SAPS) as follows: (a) Under multiple ring current intensifications, the storm‐time subauroral ionosphere produced long‐lasting duskside SAPS for ∼36 hr along with considerable dawnside SAPS for several hours. (b) Associated with long‐lived SAPS, strong SED occurred consecutively in the European longitude sector near local noon during a positive ionospheric storm and later in the North American longitude sector near local dusk during a negative ionospheric storm. (c) The 3‐D morphology of SED in multiple longitude sectors was reconstructed using TIDAS data assimilation technique with fine‐scale details, which revealed a narrow ionospheric plasma channel with electron density enhancement and layer uplift.

     
    more » « less
  6. The Tonga volcano eruption at 04:14:45 UT on 2022-01-15 released enormous amounts of energy into the atmosphere, triggering very significant geophysical variations not only in the immediate proximity of the epicenter but also globally across the whole atmosphere. This study provides a global picture of ionospheric disturbances over an extended period for at least 4 days. We find traveling ionospheric disturbances (TIDs) radially outbound and inbound along entire Great-Circle loci at primary speeds of ∼300–350 m/s (depending on the propagation direction) and 500–1,000 km horizontal wavelength for front shocks, going around the globe for three times, passing six times over the continental US in 100 h since the eruption. TIDs following the shock fronts developed for ∼8 h with 10–30 min predominant periods in near- and far- fields. TID global propagation is consistent with the effect of Lamb waves which travel at the speed of sound. Although these oscillations are often confined to the troposphere, Lamb wave energy is known to leak into the thermosphere through channels such as atmospheric resonance at acoustic and gravity wave frequencies, carrying substantial wave amplitudes at high altitudes. Prevailing Lamb waves have been reported in the literature as atmospheric responses to the gigantic Krakatoa eruption in 1883 and other geohazards. This study provides substantial first evidence of their long-duration imprints up in the global ionosphere. This study was enabled by ionospheric measurements from 5,000+ world-wide Global Navigation Satellite System (GNSS) ground receivers, demonstrating the broad implication of the ionosphere measurement as a sensitive detector for atmospheric waves and geophysical disturbances. 
    more » « less
  7. Abstract

    This work investigates mid‐ and low‐latitude ionospheric disturbances over the American sector during a moderate but geo‐effective geomagnetic storm on 13–14 March 2022 (π‐Day storm), using ground‐based Global Navigation Satellite System total electron content data, ionosonde observations, and space‐borne measurements from the Global‐scale Observations of Limb and Disk (GOLD), Swarm, the Defense Meteorological Satellite Program (DMSP), and the Ionospheric Connection Explorer (ICON) satellites. Our results show that this modest but geo‐effective storm created a number of large ionospheric disturbances, especially the dynamic multi‐scale electron density gradient features in the storm main phase as follows: (a) The low‐latitude equatorial ionization anomaly (EIA) exhibited a dramatic storm‐time deformation and reformation, where the EIA crests evolved into a bright equatorial band for 1–2 hr and then quickly separated back into the typical double‐crest structure with a broad crest width and deep equatorial trough. (b) Strong equatorial plasma bubbles (EPBs) occurred with an abnormally high latitude/altitude extension, reaching the geomagnetic latitude of ∼30°, corresponding to an Apex height of 2,600 km above the dip equator. (c) The midlatitude ionosphere experienced a conspicuous storm‐enhanced density (SED) plume structure associated with the subauroral polarization stream (SAPS). This SED/SAPS feature showed an unusual temporal variation that intensified and diminished twice. These distinct mid‐ and low‐latitude ionospheric disturbances could be attributed to the storm‐time electrodynamic effect of electric field perturbation, along with contributions from neutral dynamics and thermospheric composition change.

     
    more » « less
  8. Abstract

    A new observational phenomenon, named Simultaneous Global Ionospheric Density Disturbance (SGD), is identified in GNSS total electron content (TEC) data during periods of three typical geospace disturbances: a Coronal Mass Ejection‐driven severe disturbance event, a high‐speed stream event, and a minor disturbance day with a maximum Kp of 4. SGDs occur frequently on dayside and dawn sectors, with a ∼1% TEC increase. Notably, SGDs can occur under minor solar‐geomagnetic disturbances. SGDs are likely caused by penetration electric fields (PEFs) of solar‐geomagnetic origin, as they are associated with Bz southward, increased auroral AL/AU, and solar wind pressure enhancements. These findings offer new insights into the nature of PEFs and their ionospheric impact while confirming some key earlier results obtained through alternative methods. Importantly, the accessibility of extensive GNSS networks, with at least 6,000 globally distributed receivers for ionospheric research, means that rich PEF information can be acquired, offering researchers numerous opportunities to investigate geospace electrodynamics.

     
    more » « less
  9. null (Ed.)
  10. Abstract

    This study develops a new Bubble Index to quantify the intensity of 2‐D postsunset equatorial plasma bubbles (EPBs) in the American/Atlantic sector, using Global‐scale Observations of the Limb and Disk (GOLD) nighttime data. A climatology and day‐to‐day variability analysis of EPBs is conducted based on the newly‐derived Bubble Index with the following results: (a) EPBs show considerable seasonal and solar activity dependence, with stronger (weaker) intensity around December (June) solstice and high (low) solar activity years. (b) EPBs exhibit opposite geomagnetic activity dependencies during different storm phases: EPBs are intensified concurrently with an increasing Kp, but are suppressed with high Kp occurring 3–6 hr earlier. (c) For the first time, we found that EPBs' day‐to‐day variation exhibited quasi‐3‐day and quasi‐6‐day periods. A coordinated analysis of Ionospheric Connection Explorer (ICON) winds and ionosonde data suggests that this multi‐day periodicity was related to the planetary wave modulation through the wind‐driven dynamo.

     
    more » « less